
Bibliography
3D models
-
Comparison and deformation analysis of five 3D models of the Paleolithic wooden point from the Ljubljanica River, IEEE, 2018 (https://www.academia.edu/37633914/Comparison_and_deformation_analysis_of_five_3D_models_of_the_Paleolithic_wooden_point_from_the_Ljubljanica_River)
-
The necessity of changing methodology of preserving waterlogged wooden object: The case of a Palaeolithic wooden point from Ljubljanica river; Deguwa, Bodrum, 2019. (https://prezi.com/kec4vds1v3ss/2019-deguwa-point/)
-
The Necessity of Changing the Methodology of Preserving Waterlogged Wooden Objects (SKYLLIS)
http://eprints.fri.uni-lj.si/4453/1/Skyllis18-2_Eric.pdf
-
The significance of detailed analysis of 3D cloud points which include data that the human eye can overlook (SKYLLIS).http://eprints.fri.uni-lj.si/4462/1/2019-Skyllis-19-Eric_et_al_2.pdf
-
Reconstruction of 3D models from microtomographic images of archeological artifacts (IMECO TC-4, Trento)https://www.imeko.org/publications/tc4-Archaeo-2020/IMEKO-TC4-MetroArchaeo2020-070.pdf in http://eprints.fri.uni-lj.si/4471/1/published_paper.pdf
-
Conservation of waterlogged wooden artefacts (Lessons learned from the palaeoliithic wooden point from the Ljubljanica river)http://eprints.fri.uni-lj.si/4473/1/Sub_Her_2020.pdf
http://eprints.fri.uni-lj.si/4450/1/eBook_CHNT-23_Solina.pdf
Deep learning
-
D. Skočaj, Deep learning (materials)
-
D. Skočaj, V. Zavrtanik, Deep learning (exercises)
Data science
-
Orange and materials for exercises